
PyVCF Documentation
Release 0.4.6

James Casbon, @jdoughertyii

July 04, 2012





CONTENTS

i



ii



PyVCF Documentation, Release 0.4.6

Contents:

CONTENTS 1



PyVCF Documentation, Release 0.4.6

2 CONTENTS



CHAPTER

ONE

INTRODUCTION

A VCFv4.0 parser for Python.

Online version of PyVCF documentation is available at http://pyvcf.rtfd.org/

The intent of this module is to mimic the csv module in the Python stdlib, as opposed to more flexible serialization
formats like JSON or YAML. vcf will attempt to parse the content of each record based on the data types specified in
the meta-information lines – specifically the ##INFO and ##FORMAT lines. If these lines are missing or incomplete,
it will check against the reserved types mentioned in the spec. Failing that, it will just return strings.

There main interface is the class: Reader. It takes a file-like object and acts as a reader:

>>> import vcf
>>> vcf_reader = vcf.Reader(open(’test/example-4.0.vcf’, ’rb’))
>>> for record in vcf_reader:
... print record
Record(CHROM=20, POS=14370, REF=G, ALT=[’A’])
Record(CHROM=20, POS=17330, REF=T, ALT=[’A’])
Record(CHROM=20, POS=1110696, REF=A, ALT=[’G’, ’T’])
Record(CHROM=20, POS=1230237, REF=T, ALT=[None])
Record(CHROM=20, POS=1234567, REF=GTCT, ALT=[’G’, ’GTACT’])

This produces a great deal of information, but it is conveniently accessed. The attributes of a Record are the 8 fixed
fields from the VCF spec:

* ‘‘Record.CHROM‘‘

* ‘‘Record.POS‘‘

* ‘‘Record.ID‘‘

* ‘‘Record.REF‘‘

* ‘‘Record.ALT‘‘

* ‘‘Record.QUAL‘‘

* ‘‘Record.FILTER‘‘

* ‘‘Record.INFO‘‘

plus attributes to handle genotype information:

• Record.FORMAT

• Record.samples

• Record.genotype

samples and genotype, not being the title of any column, are left lowercase. The format of the fixed fields is from
the spec. Comma-separated lists in the VCF are converted to lists. In particular, one-entry VCF lists are converted to
one-entry Python lists (see, e.g., Record.ALT). Semicolon-delimited lists of key=value pairs are converted to Python
dictionaries, with flags being given a True value. Integers and floats are handled exactly as you’d expect:

3

http://pyvcf.rtfd.org/


PyVCF Documentation, Release 0.4.6

>>> vcf_reader = vcf.Reader(open(’test/example-4.0.vcf’, ’rb’))
>>> record = vcf_reader.next()
>>> print record.POS
14370
>>> print record.ALT
[’A’]
>>> print record.INFO[’AF’]
[0.5]

There are a number of convienience methods and properties for each Record allowing you to examine properties of
interest:

>>> print record.num_called, record.call_rate, record.num_unknown
3 1.0 0
>>> print record.num_hom_ref, record.num_het, record.num_hom_alt
1 1 1
>>> print record.nucl_diversity, record.aaf
0.6 0.5
>>> print record.get_hets()
[Call(sample=NA00002, GT=1|0, GQ=48)]
>>> print record.is_snp, record.is_indel, record.is_transition, record.is_deletion
True False True False
>>> print record.var_type, record.var_subtype
snp ts
>>> print record.is_monomorphic
False

record.FORMAT will be a string specifying the format of the genotype fields. In case the FORMAT column does
not exist, record.FORMAT is None. Finally, record.samples is a list of dictionaries containing the parsed
sample column and record.genotype is a way of looking up genotypes by sample name:

>>> record = vcf_reader.next()
>>> for sample in record.samples:
... print sample[’GT’]
0|0
0|1
0/0
>>> print record.genotype(’NA00001’)[’GT’]
0|0

The genotypes are represented by Call objects, which have three attributes: the corresponding Record site, the
sample name in sample and a dictionary of call data in data:

>>> call = record.genotype(’NA00001’)
>>> print call.site
Record(CHROM=20, POS=17330, REF=T, ALT=[’A’])
>>> print call.sample
NA00001
>>> print call.data
{’GT’: ’0|0’, ’HQ’: [58, 50], ’DP’: 3, ’GQ’: 49}

Please note that as of release 0.4.0, attributes known to have single values (such as DP and GQ above) are returned as
values. Other attributes are returned as lists (such as HQ above).

There are also a number of methods:

>>> print call.called, call.gt_type, call.gt_bases, call.phased
True 0 T|T True

Metadata regarding the VCF file itself can be investigated through the following attributes:

4 Chapter 1. Introduction



PyVCF Documentation, Release 0.4.6

• Reader.metadata

• Reader.infos

• Reader.filters

• Reader.formats

• Reader.samples

For example:

>>> vcf_reader.metadata[’fileDate’]
’20090805’
>>> vcf_reader.samples
[’NA00001’, ’NA00002’, ’NA00003’]
>>> vcf_reader.filters
{’q10’: Filter(id=’q10’, desc=’Quality below 10’), ’s50’: Filter(id=’s50’, desc=’Less than 50% of samples have data’)}
>>> vcf_reader.infos[’AA’].desc
’Ancestral Allele’

Random access is supported for files with tabix indexes. Simply call fetch for the region you are interested in:

>>> vcf_reader = vcf.Reader(filename=’test/tb.vcf.gz’)
>>> for record in vcf_reader.fetch(’20’, 1110696, 1230237):
... print record
Record(CHROM=20, POS=1110696, REF=A, ALT=[’G’, ’T’])
Record(CHROM=20, POS=1230237, REF=T, ALT=[None])

Or extract a single row:

>>> print vcf_reader.fetch(’20’, 1110696)
Record(CHROM=20, POS=1110696, REF=A, ALT=[’G’, ’T’])

The Writer class provides a way of writing a VCF file. Currently, you must specify a template Reader which
provides the metadata:

>>> vcf_reader = vcf.Reader(filename=’test/tb.vcf.gz’)
>>> vcf_writer = vcf.Writer(file(’/dev/null’, ’w’), vcf_reader)
>>> for record in vcf_reader:
... vcf_writer.write_record(record)

An extensible script is available to filter vcf files in vcf_filter.py. VCF filters declared by other packages will be
available for use in this script. Please see Filtering VCF files for full description.

5



PyVCF Documentation, Release 0.4.6

6 Chapter 1. Introduction



CHAPTER

TWO

API

2.1 vcf.Reader

class vcf.Reader(fsock=None, filename=None, compressed=False, prepend_chr=False)
Reader for a VCF v 4.0 file, an iterator returning _Record objects

fetch(chrom, start, end=None)
fetch records from a Tabix indexed VCF, requires pysam if start and end are specified, return iterator over
positions if end not specified, return individual _Call at start or None

filters = None
FILTER fields from header

formats = None
FORMAT fields from header

infos = None
INFO fields from header

metadata = None
metadata fields from header

next()
Return the next record in the file.

2.2 vcf.Writer

class vcf.Writer(stream, template)
VCF Writer

write_record(record)
write a record to the file

2.3 vcf._Record

class vcf.parser._Record(CHROM, POS, ID, REF, ALT, QUAL, FILTER, INFO, FORMAT, sam-
ple_indexes, samples=None)

A set of calls at a site. Equivalent to a row in a VCF file.

The standard VCF fields CHROM, POS, ID, REF, ALT, QUAL, FILTER, INFO and FORMAT are available as
properties.

7



PyVCF Documentation, Release 0.4.6

The list of genotype calls is in the samples property.

aaf
The allele frequency of the alternate allele. NOTE 1: Punt if more than one alternate allele. NOTE 2:
Denominator calc’ed from _called_ genotypes.

alleles = None
list of alleles. [0] = REF, [1:] = ALTS

call_rate
The fraction of genotypes that were actually called.

end = None
1-based end coordinate

genotype(name)
Lookup a _Call for the sample given in name

get_hets()
The list of het genotypes

get_hom_alts()
The list of hom alt genotypes

get_hom_refs()
The list of hom ref genotypes

get_unknowns()
The list of unknown genotypes

is_deletion
Return whether or not the INDEL is a deletion

is_indel
Return whether or not the variant is an INDEL

is_monomorphic
Return True for reference calls

is_snp
Return whether or not the variant is a SNP

is_sv
Return whether or not the variant is a structural variant

is_sv_precise
Return whether the SV cordinates are mapped to 1 b.p. resolution.

is_transition
Return whether or not the SNP is a transition

nucl_diversity
pi_hat (estimation of nucleotide diversity) for the site. This metric can be summed across multiple sites to
compute regional nucleotide diversity estimates. For example, pi_hat for all variants in a given gene.

Derived from: “Population Genetics: A Concise Guide, 2nd ed., p.45”

John Gillespie.

num_called
The number of called samples

num_het
The number of heterozygous genotypes

8 Chapter 2. API



PyVCF Documentation, Release 0.4.6

num_hom_alt
The number of homozygous for alt allele genotypes

num_hom_ref
The number of homozygous for ref allele genotypes

num_unknown
The number of unknown genotypes

samples = None
list of _Calls for each sample ordered as in source VCF

start = None
0-based start coordinate

sv_end
Return the end position for the SV

var_subtype
Return the subtype of variant. - For SNPs and INDELs, yeild one of: [ts, tv, ins, del] - For SVs yield either
“complex” or the SV type defined

in the ALT fields (removing the brackets). E.g.:

<DEL> -> DEL <INS:ME:L1> -> INS:ME:L1 <DUP> -> DUP

The logic is meant to follow the rules outlined in the following paragraph at:

http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-
41

“For precisely known variants, the REF and ALT fields should contain the full sequences for the alleles,
following the usual VCF conventions. For imprecise variants, the REF field may contain a single base
and the ALT fields should contain symbolic alleles (e.g. <ID>), described in more detail below. Imprecise
variants should also be marked by the presence of an IMPRECISE flag in the INFO field.”

var_type
Return the type of variant [snp, indel, unknown] TO DO: support SVs

2.4 vcf._Call

class vcf.parser._Call(site, sample, data)

called
True if the GT is not ./.

data
Dictionary of data from the VCF file

gt_bases
The actual genotype alleles. E.g. if VCF genotype is 0/1, return A/G

gt_type
The type of genotype. hom_ref = 0 het = 1 hom_alt = 2 (we don;t track _which+ ALT) uncalled = None

is_het
Return True for heterozygous calls

is_variant
Return True if not a reference call

2.4. vcf._Call 9

http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41


PyVCF Documentation, Release 0.4.6

phased
A boolean indicating whether or not the genotype is phased for this sample

sample
The sample name

site
The _Record for this _Call

10 Chapter 2. API



CHAPTER

THREE

FILTERING VCF FILES

3.1 The filter script: vcf_filter.py

Filtering a VCF file based on some properties of interest is a common enough operation that PyVCF offers an exten-
sible script. vcf_filter.py does the work of reading input, updating the metadata and filtering the records.

3.2 Adding a filter

You can reuse this work by providing a filter class, rather than writing your own filter. For example, lets say I want to
filter each site based on the quality of the site. I can create a class like this:

import vcf.filters
class SiteQuality(vcf.filters.Base):

description = ’Filter sites by quality’
name = ’sq’

@classmethod
def customize_parser(self, parser):

parser.add_argument(’--site-quality’, type=int, default=30,
help=’Filter sites below this quality’)

def __init__(self, args):
self.threshold = args.site_quality

def __call__(self, record):
if record.QUAL < self.threshold:

return record.QUAL

This class subclasses vcf.filters.Base which provides the interface for VCF filters. The description‘ and
name are metadata about the parser. The customize_parser method allows you to add arguments to the script.
We use the __init__ method to grab the argument of interest from the parser. Finally, the __call__ method
processes each record and returns a value if the filter failed. The base class uses the name and threshold to create
the filter ID in the VCF file.

To make vcf_filter.py aware of the filter, you can either use the local script option or declare an entry point. To use a
local script, simply call vcf_filter:

$ vcf_filter.py --local-script my_filters.py ...

To use an entry point, you need to declare a vcf.filters entry point in your setup:

11



PyVCF Documentation, Release 0.4.6

setup(
...
entry_points = {

’vcf.filters’: [
’site_quality = module.path:SiteQuality’,

]
}

)

Either way, when you call vcf_filter.py, you should see your filter in the list of available filters:

usage: vcf_filter.py [-h] [--no-short-circuit] [--no-filtered]
[--output OUTPUT] [--local-script LOCAL_SCRIPT]
input filter [filter_args] [filter [filter_args]] ...

Filter a VCF file

positional arguments:
input File to process (use - for STDIN) (default: None)

optional arguments:
-h, --help Show this help message and exit. (default: False)
--no-short-circuit Do not stop filter processing on a site if any filter

is triggered (default: False)
--output OUTPUT Filename to output [STDOUT] (default: <open file

’<stdout>’, mode ’w’ at 0x1002841e0>)
--no-filtered Output only sites passing the filters (default: False)
--local-script LOCAL_SCRIPT

Python file in current working directory with the
filter classes (default: None)

sq:
Filter sites by quality

--site-quality SITE_QUALITY
Filter sites below this quality (default: 30)

3.3 The filter base class: vcf.filters.Base

class vcf.filters.Base(args)
Base class for vcf_filter.py filters

classmethod customize_parser(parser)
hook to extend argparse parser with custom arguments

description = ‘VCF filter base class’
descrtiption used in vcf headers

filter_name()
return the name to put in the VCF header, default is name + threshold

name = ‘f’
name used to activate filter and in VCF headers

12 Chapter 3. Filtering VCF files



CHAPTER

FOUR

UTILITIES

Utilities for VCF files.

4.1 Simultaneously iterate two or more files

vcf.utils.walk_together(*readers)
Simultaneously iteratate two or more VCF readers and return lists of concurrent records from each reader, with
None if no record present. Caller must check the inputs are sorted in the same way and use the same reference
otherwise behaviour is undefined.

13



PyVCF Documentation, Release 0.4.6

14 Chapter 4. Utilities



CHAPTER

FIVE

DEVELOPMENT

Please use the PyVCF repository. Pull requests gladly accepted. Issues should be reported at the github issue tracker.

5.1 Running tests

Please check the tests by running them with:

python setup.py test

New features should have test code sent with them.

15

https://github.com/jamescasbon/PyVCF/


PyVCF Documentation, Release 0.4.6

16 Chapter 5. Development



CHAPTER

SIX

CHANGES

6.1 0.4.6 Release

• Performance improvements (#47)

• Preserve order of INFO column (#46)

6.2 0.4.5 Release

• Support exponent syntax qual values (#43, #44) (thanks @martijnvermaat)

• Preserve order of header lines (#45)

6.3 0.4.4 Release

• Support whitespace in sample names

• SV work (thanks @arq5x)

• Python 3 support via 2to3 (thanks @marcelm)

• Improved filtering script, capable of importing local files

6.4 0.4.3 Release

• Single floats in Reader._sample_parser not being converted to float #35

• Handle String INFO values when Number=1 in header #34

6.5 0.4.2 Release

• Installation problems

17



PyVCF Documentation, Release 0.4.6

6.6 0.4.1 Release

• Installation problems

6.7 0.4.0 Release

• Package structure

• add vcf.utils module with walk_together method

• samtools tests

• support Freebayes’ non standard ‘.’ for no call

• fix vcf_melt

• support monomorphic sites, add is_monomorphic method, handle null QUALs

• filter support for files with monomorphic calls

• Values declared as single are no-longer returned in lists

• several performance improvements

6.8 0.3.0 Release

• Fix setup.py for python < 2.7

• Add __eq__ to _Record and _Call

• Add is_het and is_variant to _Call

• Drop aggressive parse mode: we’re always aggressive.

• Add tabix fetch for single calls, fix one->zero based indexing

• add prepend_chr mode for Reader to add chr to CHROM attributes

6.9 0.2.2 Release

Documentation release

6.10 0.2.1 Release

• Add shebang to vcf_filter.py

6.11 0.2 Release

• Replace genotype dictionary with a Call object

• Methods on Record and Call (thanks @arq5x)

• Shortcut parse_sample when genotype is None

18 Chapter 6. Changes



PyVCF Documentation, Release 0.4.6

6.12 0.1 Release

• Added test code

• Added Writer class

• Allow negative number in INFO and FORMAT fields (thanks @martijnvermaat)

• Prefer vcf.Reader to vcf.VCFReader

• Support compressed files with guessing where filename is available on fsock

• Allow opening by filename as well as filesocket

• Support fetching rows for tabixed indexed files

• Performance improvements (see test/prof.py)

• Added extensible filter script (see FILTERS.md), vcf_filter.py

6.12. 0.1 Release 19



PyVCF Documentation, Release 0.4.6

20 Chapter 6. Changes



CHAPTER

SEVEN

CONTRIBUTIONS

Project started by @jdoughertyii and taken over by @jamescasbon on 12th January 2011. Contributions from @arq5x,
@brentp, @martijnvermaat, @ian1roberts, @marcelm.

This project was supported by Population Genetics.

21

http://www.populationgenetics.com/


PyVCF Documentation, Release 0.4.6

22 Chapter 7. Contributions



CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

23



PyVCF Documentation, Release 0.4.6

24 Chapter 8. Indices and tables



PYTHON MODULE INDEX

v
vcf, ??
vcf.utils, ??

25


